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This paper offers a class of diffusion models that mimic the firm’s pecking order behaviour and are designed to
optimize an intertemporal leverage strategy in the presence of refinancing transaction costs. The proposed
class of models is compatible with traditional static tradeoff theories and can be used to recast those theories
in a dynamic framework by superimposing refinancing costs. We derive analytical expressions for the
parameters of an optimal leverage strategy with exogenous refinancing limits, including the minimum cost
of capital in a stochastic dynamic framework with transaction costs, the target values to which the leverage
should be readjusted when the limits are reached, and the mean leverage implied by the optimal strategy.
Our class of models enriches the pecking order theory and provides a quantitative framework for its imple-
mentation as a decision tool. It also provides additional hypotheses for empirical validation of that theory.
Symmetrically, our results show the importance of dynamic factors in designing and interpreting empirical
tests of static tradeoff theories.
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1. Introduction

Under traditional capital structure theories, the firm is faced with a flat or a U-shaped cost of
capital function describing the penalty associated with deviation from a possible unique optimal
interior financial leverage. The precise shape and location of that function reflects a static tradeoff
among various factors based in the economy or unique to the industry or the individual firm.
Despite valuable contributions of those theories to the science of finance, a strong case is made
* by Myers (1984) that they ‘don’t seem to explain the actual financing behaviour, and it seems
presumptuous to advise firms on optimal capital structure when we are so far from explaining
actual decisions’.! In large measure, this shortcoming is blamed on the manner in which static
theories treat financing transaction costs. While traditional theories recognize issuance and
repurchase costs of debt and equity in a deterministic static framework, the management of capital
structure must deal with those costs in a dynamic framework where they are triggered by the firm’s
uncertain demand for external funds. The static solution for a friction-free market, by which all
incremental external financing is at the static-optimal leverage ratio, is obviously non-optimal
where substantial transaction costs are present. This problem is recognized but not dealt with
by the traditional literature.

" From his Presidential Address before the American Finance Association, December 1993, p.575.
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The importance of transaction costs in shaping the firm’s capital structure policy is the substance
of the pecking order theory advanced by Myers (1984) and Myers and Majluf (1984). According to
this theory, the firm’s dividend policy is set to accommodate long-term growth opportunities, and
is therefore sticky in the short term. Sources of cash available to offset frequent changes in operating
cash flow and meet required changes in investment are selected based on their respective transaction
costs, a concept broadly defined. Internal equity is used first because it is free of such costs. When
exhausted, it is followed by incremental borrowing characterized by low transaction costs. Beyond a
certain limit, borrowing is followed by costly refinancing through the issuance of stock. A similar
sequence of changes in the opposite direction is followed in response to an incremental excess cash
flow. Consistent with evidence reported below, that incremental external equity, but not debt, has a
large component of fixed transaction costs, the firm following this ‘pecking order’, would allow its
debt and debt ratio to fluctuate within wide limits. Stock would be issued or repurchased for the
purpose of refinancing only infrequently, in lump sums, when those limits were reached. This scenario
is largely confirmed by evidence reported by Shyam-Sunder and Myers (1992), that frequent
incremental changes observed in book debt ratios of US firms closely match contemporaneous
changes in the demand for external funds. The latter changes are met almost entirely by incremental
borrowing or debt retirement. Myers’s (1984) earlier hypothesis about the role of transaction costs
in inducing asymmetric changes in the firm’s debt and equity, and the implication of this behaviour
for capital structure theory, are summarized by his own statement:

Large adjustment costs could possibly explain the observed wide variation in actual debt ratios, since
firms would be forced into long excursions away from their optimal debt ratios ... If adjustment costs
are large, so that some firms take extended excursions away from their targets, then we ought to give less
attention to refining our static tradeoff stories and relatively more to understanding what the adjustment
costs are, why they are so important, and how rational managers would respond to them (p.578).

We respond to this call by offering here a class of diffusion models which mimic the firm’s financial
hierarchy and are designed to optimize an intertemporal leverage strategy in the presence of
refinancing transaction costs. The proposed class of models is compatible with existing static trade-
off theories and can be used to recast those theories in a dynamic framework by superimposing
refinancing costs.

Other existing models of the firm’s dynamic leverage policy are those of Fischer, Heinkel and
Zechner (FHZ, 1989), Mauer and Triantis (MT, 1994), and Bagley, Ghosh and Yaari (BGY, 1993).
Our earlier work with Dilip Ghosh, which analyses the important but special case of purely fixed
transaction costs, is extended here to treat transaction costs in general.

Our differences with FHZ and MT concern the theoretical framework, the scenario modelled,
and the results. While they use contingent claims valuation models to study the specialized static
scenario of leverage indifference cum corporate income tax shield, the (S, s) diffusion model used
here can assimilate the cost of capital function of any static theory. Consistent with their choice of
a theoretical framework, they rely on the assumption that the firm’s incremental investment is
financed exclusively from the shareholders’ ‘deep pocket’: external funds in excess of cash reserves
and current earnings can come only from cuts in current dividends. While they disallow incremental
borrowing between refinancing transactions, we follow the preponderance of evidence and the peck-
ing order theory in assuming that a sticky dividend policy causes incremental investment in excess of
internal sources to be financed by incremental borrowing.
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In further differences from FHZ and MT, our class of models allows a closed form solution and
the advantages that come with it. We derive new analytical expressions for the following compo-
nents of the optimal leverage strategy with exogenous refinancing limits: (a) the firm’s minimum
cost of capital in a stochastic dynamic framework with transaction costs; (b) the optimal target
values to which the leverage should be readjusted when the limits are reached; and (c) the mean
leverage implied by the optimal strategy. The analytical solution further allows us to prove a
numerical result of MT, that the combination of fixed and variable refinancing costs leads to
two distinct optimal leverage target ratios, one for each of the refinancing limits.

Despite differences between the theoretical frameworks and assumptions used, the general thrust
of our results is similar to that of FHZ and MT. This in itself is an important finding, confirming
the robustness of the results of all four studies. Jointly with the models of FHZ, MT and BGY,
those presented here show the importance of dynamic factors in designing and interpreting empirical
tests of static tradeoff theories. The class of models proposed by BGY and extended here makes
additional contributions by enriching the pecking order theory and providing a quantitative frame-
work for its implementation as a decision tool. It also provides additional hypotheses for empirical
validation of that theory. The potential normative usefulness of our class of models is demonstrated
by a numerical solution for a realistic case too complex for an analytical solution.

The remainder of this paper is organized as follows. Section 2 offers a brief survey of the
evidence on transaction costs, the basis for this study; Section 3 contains the derivation of the
models; Section 4 discusses implications of the models for a testable positive theory of refinancing;
Section 5 provides numerical solutions for realistic scenarios defying analytical solutions; and
Section 6 a conclusion.

2. Evidence of transaction costs

The pecking order theory of Myers (1984) and Myers and Majluf (1984) and its empirical support
by Shyam-Sunder and Myers (1992) together make a strong case for the existence of substantial,
broadly defined equity transaction costs. In combination with the evidence that stock issuance and
repurchase — unlike incremental changes in the firm’s debt — are infrequent and in lump sums, the
pecking order theory also implies the presence of a significant component of fixed equity trans-
action costs. Comprehensive estimates of stock issuance costs are reported in studies conducted on
established US industrial firms traded on organized exchanges. Studying underwritten cash offer-
ings, Asquith and Mullins (1986), Masulis and Korwar (1986), Mikkelson and Partch (1986) and
“others cited by Smith (1986) report a permanent downward adjustment in the price of the stock
held by existing shareholders reaching nearly a third of the new money raised. The importance of a
fixed cost component is suggested by the absence of a significant cross-sectional relationship
between issue size and the associated stock price adjustment. Given the strong association between
firm size and issue size, dominant variable costs would cause instead a significant relationship
between issue size and the negative price adjustment of existing stock. Direct evidence for the
importance of fixed stock issuance costs is reported by Smith (1977) who shows substantial econo-
mies of scale in underwriters’ compensation and direct administrative expenses — two important
components of the overall issuance cost.
Contrary to issuance, where overall transaction costs measured by a stock price fall entail direct
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cost and a related negative information signal working in the same direction, the adverse price
effect of transaction costs in repurchase may be masked by a larger, possibly unrelated positive
price effect of a favourable signal. Empirical studies of the repurchase price premium by Masulis
(1980), Dann (1981), and Vermaelen (1981) suggest that the sampled open market purchases and
tender offers are largely unrelated to leverage adjustments. These studies make no attempt to estimate
the effect of transaction costs on the price premium. Measuring directly one category of transaction
costs, Ferris et al. (1978) report that US companies repurchasing shares in lump sum via tender offer
pay dealers a per-share soliciting fee averaging 6%, but reaching as high as 20% of the closing
market price one week prior to the offer date. If nothing else, management attention devoted to
the typically large and infrequent tender offers would entail significant fixed transaction costs on
top of any variable soliciting costs. Since according to evidence reported by Elton and Gruber
(1968), incremental open market repurchases involve mainly variable transaction costs, the absolute
and relative importance of fixed and variable costs may vary across firms depending on the repurchase
method used for refinancing.

The parallel evidence on debt indicates considerably smaller issuance and, by implication, repay-
ment costs. Eckbo (1986) reports on insignificant stock price adjustment to large debt offerings of
US industrial firms. Mikkeison and Partch (1986) report that the stock price adjustment associated
with debt offerings is negative but less pronounced than that associated with stock offerings.
Furthermore, private placements of debt and term loans have no significant effect on stock prices.
This evidence is consistent with the presence of competing low-cost methods of raising debt
privately, or publicly by ‘shelf registration’ under the SEC’s Rule 415 of 1982.

3. The models

Our main objective in this paper is to present a general theoretical framework in which various
refinancing strategies may be explored. Our priority is to reach a closed form solution that would
allow further analysis of the components of the optimal strategy — a basis for verifying numerical
solutions to more complex, realistic models. The following set of assumptions represent a balance
between realism and mathematical tractability.

3.1 Assumptions

(i) Two classes of securities — debt and equity — are used by the firm to raise funds. The two
securities are combined into a single state-control variable, x.

(ii) The firm is in steady state equilibrium.

(iii) Static leverage theories enter this class of dynamic models by specifying the appropriate
fixed® penalty function, which is a linear transformation of the standard weighted average
cost of capital (WACCQC) of debt and equity, exclusive of deterministic transaction costs,
defined over the leverage domain. The penalty function is calculated by subtracting from
the WACC at any leverage the minimum WACC and multiplying by the fixed firm size.

2 Our models can easily be generalized by introducing a random shock to the penalty function itself.
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(iv)

V)

(vi)

(vii)

(v111)

By construction, the penalty function measures the excess annual dollar capital cost over the
same domain. The flat zero value penalty function used in some models below represents the
static theory of leverage indifference as per Modigliani and Miller (1958) and Miller (1977).
The dynamic setting created by this static scenario is faithful to the pure version of the peck-
ing order theory of Myers (1984) and Myers and Majluf (1984). A quadratic U-shaped func-
tion used in other models below is compatible with the standard textbook WACC of the same
generic form. An increasing monotonic penalty function would represent a dominant cost of
financial distress, and a decreasing one a dominant corporate tax shield on interest expense.
The penalty function is assumed to incorporate any risk preference and be independent of
the dynamic leverage strategies derived below. The latter assumption is consistent with
results of MT, showing that the firm’s operating decisions are insensitive to its debt policy.
We chose to analyse the cases of no penalty or a quadratic penalty function for their math-
ematical convenience and the prominence of static theories espousing leverage indifference or
fixed interior optimal leverage.

The stochastic excess demand for external financing is met instantaneously and costlessly by
adjustments in borrowing.® Infrequent refinancing transactions involving lump-sum offset-
ting changes in debt and equity are made without delay but at a cost comprising fixed and
variable components. The proceeds of stock issuance are used to retire debt, and stock
repurchase is financed by borrowing. Our treatment accommodates as special cases the
absence of variable or fixed transaction costs at one barrier or both.

The state-control variable, x, that summarizes the capital structure of the firm remains the-
oretically unspecified. In the present context, the correct specification of this leverage index is
an empirical question. To be consistent with our models, this index must be monotonically
increasing with the amount of debt, and decreasing with increases in the amount of equity.
This index must also follow the diffusion process described below within the relevant range
of the optimal control barriers.

The leverage index state variable follows a Wiener process with constant drift, u, and
diffusion parameter, G:

dx = pdt + odw (1)

The use of this process is compatible with the theoretical arguments of Myers (1984) and the
consistent evidence of studies of Stonehill ef al. (1975), Marsh (1982), Titman and Wessels
(1988), and Shyam-Sunder and Myers (1992), whereby the firm’s leverage policy is domi-
nated by the relationship between book rather than market values of debt and equity.

The process is constrained between fixed lower and upper control barriers denoted by a and

3 A direct inclusion of transaction costs of incremental debt adjustments is prevented by the continuous nature of those
adjustments under the process assumed here (see assumption (vii)). Such costs can enter our class of models only indirectly.
For example, if adjustments in reality are discrete, their periodic cost would generally depend on their expected frequency,
size and variability, and on their fixed and variable cost parameters. Given the exogenous and constant parameters of the
process, the optimal strategy of incremental debt adjustments could be determined, under certain unrestrictive assumptions,
independently of the refinancing strategy derived here. Once determined, the optimal debt-adjustment policy would entail a
constant expected periodic cost, having no effect on the refinancing strategy analysed here. However, that periodic cost
would be added to the excess capital cost calculated here.
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b, respectively. When the state variable hits the upper barrier, the firm makes a lump-sum
adjustment in its capital structure by issuing stock and retiring bonds in the amount b — x; at
a cost C,(b, x;). This transaction returns the state variable to a fixed return point, x,,
between a and b. When the state variable hits the lower barrier, the firm makes a similar
adjustment by stock repurchase refinanced by borrowing in the amount x, — a, at a cost
C,(a,x,). This transaction returns the state variable to the second fixed return point, x,,
between a and b. In the general case, the parameters a, x,, x;, and b are determined endogen-
ously and no « priori assumptions are made about the relative positions of the two return
points. As the state variable driven by the process moves between the two barriers, it generates
instantaneous costs that are a function of the instantaneous value of the state variable along
the penalty function. Note that we are allowing the optimal return points to differ from any
static-optimal leverage inherent in the penalty function. '

o b upper barrier
-3 K, stock
u 1ssuance
8
Xp Upper return point
;(; ________________________________________ Mean leverage
%0 Static-optimal leverage
Xa ¥ Lower return point
Stock
{ repurchase
a Lower barrier
0 Time Penalty

Fig. 1. (a) Two hypothetical time paths starting (b) Penalty function at x, and their respective equity
transactions.

3.2 Derivation

Our objective is to replace the upper and lower barriers and return points for leverage readjustment
so that the expected sum of periodic transaction costs and penalty for deviating from any static-
optimal leverage may be minimized.

To simplify the derivation without loss of generality, we define h = —2u/ o2 and substitute it into
(1) to obtain the following expression for the diffusion process of our state variable, the leverage
index:

dx = —%azhdt +odw, h= Z2 (2)

ol

The derivation of the optimal refinancing strategy begins by calculating the intermediate variable
s and the scale function S (see Karlin and Taylor, 1981 for a standard presentation of the
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inventory-theoretic technique)

_ g2y

s(x) =e TP =M 3)
ehx
S(x) = Js(x)dx = (4)
The speed density, m, is calculated from (3):
1 1
= —_— = 5
m(x) ols(x) o2 )

From (4), we next calculate the probability of hitting the upper barrier before the lower one, U(x),
when starting at any point x (see Fig. 1):
S(x)— S(a) e —e*
Ux) = = <x<b 6
™) =56) " S@ e IS¥ ©)
The expected time to reach either barrier, V' (x), given that the state variable starts at any x, is
calculated based on (4)—(6):

V(ix)=2 (U(x) Jb

X

X

[S(b) — S(x"Ym(x')dx’ + (1 - U(x»j

a

[S(x") ~ S(a)]m(x')dx')

_2((b—a)e™ +e"(a—x) +e™(x - b)) )
- (eah _ ebh)ho.Z

Let g(x) be a quadratic penalty function measuring instantaneous dollar costs per unit time
incurred when the state variable is at any x:

g0 =2Cc x5 =0 (>0 Q

where the constant ¢/2 measures the slope. This U-shaped function is a linear transformation of a
quadratic WACC function defined over the leverage domain (see assumption (iii} above). For
convenience, we set xq = 0 and g(0) = 0 so that the penalty function is constructed to measure
only the excess capital cost beyond the minimum, exclusive of refinancing transaction costs. Some
of the numerical results must be adjusted to reverse these shifts. When starting at any point x, the
expected penalty incurred up to the point of encounter with either barrier is

X

b
() = 2(Un) | [5(0) = Sl hg(x' Yo+ (1~ 01

a

(') - S(a)]m(x’)g(x')dx’)

(6nh*((a — bYe™™ +e™(b — x) + e (x — a)) + A, b, x) + \(b, x,a) + A(x, a,b))
3(—6“" +ebh)h302

where

Ay, 6,€) = e M (6]6 — €] + 3h[67 — €] + h2[6> — €])¢ (10)
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and where ~, §, and ¢ are merely place-holders. Having derived by (6) the probability of hitting the
upper barrier first, U(x), and that of hitting the lower barrier first, 1 — U(x), we state the expected
cost of transacting at either barrier as

k(x) = U(x)Cy(b = xp) + (1 = U(x))Ca(xa — a)

(Cbh _ Chx)Ca + (ehx _ eah)Cb 1
= obh _ gah (11)

where C, and C, are any functions of the respective differences x, — a and b — x;,. Having calcu-
lated the expected penalty incurred up to the first encounter with either barrier, W(x), and the
expected transaction costs at the barriers, k(x), we derive the expected periodic financing cost
by dividing the combined expected cost by the expected time of reaching either barrier, V' (x),

_ W(x)+ k(x)
'L[)(X) - V(X)
(M@, b,x) + A(b, x,a) + A(x,a,b) + 3h02((e™ — ") C, + (" - e™)C})) (12)
- 6h2(e?(x — a) +e™(b — x) + (a — b)e"¥)

which is valid for any starting point, x. In the context of the present optimization strategy, there
are up to two relevant starting points — x, and x; - which are also the refurn points in steady-state
equilibrium. To calculate the expected global costs to be incurred until the next encounter, we must
determine the complementary probabilities of starting the process from point x, versus x,. It is
shown in Appendix A that those probabilities are, respectively, P(a) and P(b) = 1 — P(a), specified
by

_ d(xs) o 1-u(x) ehv _ b
Pla) = 1 4+ d(x,) — d{x,) 1+ u(xg) — u(xy) T edh _obh _ ohxy 4 ohxy (13a)
P(b) ) Lol enoer (13b)

T T+ ulx,) —u(xy)  1+d(x) —d(xy) e® —ebh — el y gl

where u(x) = 1 — d(x) is the probability of hitting the upper barrier first conditional upon starting
the process at point x, and d(x) the complementary conditional probability of hitting the lower
barrier first. These conditional probabilities are calculated based on (6).

In its general form, the objective function to be minimized, Z{(a,x,,x,,b), is the expected
periodic global cost utilizing the above expressions for the expected cost up to the next encounter
and the probabilities of starting the process at points x, and x;,

Z(a, x4, Xp,b) = P(a)p(x,) + P(b)(xp)
= p(a,b) — ¢(b,a) (14)
p(p.q) =
(Ma, b,x,) + Mb, X, @) + Mx,,a,b) + 3057 (e — "%)C, + (—e” + ") C}))
6h2(e“h _ ebh _ ehx,, + ehx,,)((_a + b)ehxp + ebh(a _ xp) + Cah<—b + xp))(eqh _ ehxq)_l

(15)
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where variables p and ¢ are used as place-holders. At its minimum, Z may be interpreted as the
firm’s excess capital cost inclusive of stochastic transaction costs and penalty for deviation from the
static-optimal leverage. A graphical representation of the refinancing strategy is offered in Fig. 1,
where two hypothetical time paths of the state variable are plotted for the sake of illustration. Since
in this drawing we assume a quadratic penalty function, the apparent asymmetry of the barriers
and return points with respect to the static-optimal leverage, xy, would be optimal only if there is
asymmetry in the process (u # 0) or the transaction costs (C, # Cp).

To minimize this function under linear transaction costs, we first specify C, = f, + v,(x, — @)
and Cp = f; + vp(b — x;) and substitute these expressions in (15). We must then take the partial
derivatives with respect to a, x,, x;, and b, set the derivatives to zero, and solve simultaneously for
the optimal values of the four decision parameters. The resulting system of equations can be solved
numerically but not analytically as we would hope. Being unable to obtain a solution for the
general case, we are ready to settle for any case that is empirically viable.

The first scenario explored is based on the assumption of binding exogenous barriers imposed by
lenders and shareholders. The objective function remains unchanged, but the set of simultaneous
equations is reduced from four to two with only two unknowns, x, and x;,. This simplification
alone does not produce a closed form solution.

In the second scenario, we reinstate the assumption of exogenous barriers and adopt the
additional assumption of zero drift by taking the limit of the objective function as #— > 0:

ZZ(aaxaaxbab) ch(baa) _(p(a7b) (16)
where
Clat(b —x,) + b*(x, — @) = xp(b — a)) + 126°((b — x,)C, + (—a -+ x,)C})) (b ~ x,)
12(—a+b)(a—b—x,+ x,)(1 — x,)

o(p.q)=

(17)
This simplification is justified by the argument that the drift is inconsistent with steady-state equi-
librium because the firm would adjust its dividend policy to accommodate its long-term investment
opportunities. Unfortunately, this simplification does not yield a closed form solution.

In the third scenario, we supplement the assumption of zero drift with the assumptions of bind-
ing exogenous barriers and no penalty function (¢ = 0). This scenario, which is consistent with the
leverage-indifference hypothesis, again leaves us short of a closed form solution.

The fourth scenario takes us back to the original setting of endogenous barriers and a non-zero
- quadratic penalty function, coupled with the assumptions of zero drift and symmetric transaction
costs (f, =f»,v, = vp). It can be shown that symmetry of the optimal barriers (a* = —b") and
return points (x; = —x}) about the static-optimal leverage is a corollary of the assumption of full
symmetry of the penalty function, transaction costs, and underlying process about x; = 0. The
objective function now becomes

7y + (0"~ x})

(b= xp) (b + xp)
_ o2 (fy +vp(b = x3)) +%(b4 S
(b~ xp)(b+xp)

Z4(a, Xar Xbs b) -
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where a, x,, f,, and v, dropped out because of symmetry. Minimization of this function with
respect to b and x; yields an implicit solution arrived at in steps.
The following equation is first solved for j:

4p°f 3 =foJ® + )’ (19)
where p = 60 /¢, and then uniquely solved for x} (equals —x):

x* :J(‘zpfi +fbj4+vbj5) (20)
’ 4pf3

and for b* (equals —a*) using the definition

b= j+x; (21)

In a simplified fifth scenario of no variable costs, we obtain the closed form solution

. (120%\ "
b =
( < ) ’

(equal respectively to —a™ and xJ,). It is worth noting that because of symmetry about x, = 0, the
equality x; = 0 implies x}, = 0, so that the upper and lower return points converge. This result,
which confirms the results of BGY, is consistent with the general theory developed by Scarf (1960)
and Iglehart (1963).

To obtain a closed form solution with both fixed and variable transaction costs, we further
restrict the third scenario described above by the assumption of symmetric transaction costs on
top of the assumptions of zero drift, binding exogenous barriers, and a flat penalty function. The
objective function of this sixth scenario, which is consistent with the leverage-indifference hypoth-
esis, is derived from (18) by substituting ¢ = 0 and treating the symmetric barriers as exogenous.
Minimization with respect to x, yields the explicit unique solution for x} and, symmetrically, x:

s 12
X = (U—’;+b) - <<%+b> —b2> = —x; (23)

The presence of variable transaction costs (v, = v, > 0) ensures the divergence of the two optimal
return points, x; < x}; (hence x; = —x}). The presence of fixed transaction costs (f, =f > 0)
further ensures the divergences x, > a and xj, < b (here x; —a = b — x}), so that a < x, < x; < b.
The combinations of assumptions facilitating analytical solutions of the optimal refinancing strategy
under the fifth and sixth scenarios are listed in Table 1 side by side with those of scenarios described
earlier which allow only numerical solutions.

The divergence of the optimal return points in (20) and (23) is an important result which can be
intuitively understood by reference to the extreme cases of pure fixed transaction costs versus pure
variable transaction costs. With only fixed transaction costs at both barriers, the optimal trans-
action at either barrier would readjust the leverage to the same point between the barriers at which
the expected penalty and transaction costs until and including the next encounter with either
barrier is at a minimum. With only variable transaction costs at both barriers, the optimal policy

> *
Il
o

(22)
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Table 1. Combination of features in the six scenarios modelled.

Scenario

General
Feature case Ist 2nd 3rd 4th Sth 6th
Drift Yes Yes No No No No No
Penalty function Any Quad. Quad. Flat Quad. Quad. Flat

symm. symm. symm. symm.
Transaction costs Any Any Any Any Linear Fixed Linear
symm. symm. symm.

Barriers Endo. Exog. Endo. Exog. Endo. Exog. Exog.
Return points Two Two Two Two Two One Two

endo. endo. endo. endo. endo. endo. endo.
Analytic solution No No No No No Yes Yes

at either barrier would call for infinitesimal refinancing steps so as to keep the leverage index from
crossing the barrier — expecting the diffusion process to pull the leverage index away from the
barrier sooner or later. This policy has two optimal return points, one at each barrier. The com-
bination of fixed and variable transaction costs pits the forces behind these extreme policies against
each other: the greater the relative weight of variable costs, the closer the two return points would
be to their respective barriers, lying farther apart from each other. Note that the cost structures at
the two barriers need not be similar. For example, to the extent that stock repurchase at the lower
barrier takes the form of incremental open market transactions which may entail only variable
transaction costs, the optimal strategy would call for infinitesimal refinancing steps at that barrier
(x, = a), but a lump-sum issuance transaction at the upper barrier (x; < b).

The firm’s excess cost of capital is obtained from the minimum cost associated with the unique
optimal refinancing strategy. In the sixth scenario, that cost is specified by substituting in (18) the
value of ¢ = 0, the exogenous parameter b, and the optimal x}; based on (23):

%0’21)1%

o+ buy — (f2 4 2bfuy)}

Having been derived under the assumption of a zero penalty, this excess capital cost is attributed
entirely to linear transaction costs occurring stochastically in a dynamic setting. The minimum
excess periodic cost, Zg, must be divided by the value of the firm to express the excess cost of
capital as a rate. In the fifth scenario, the excess cost of capital can be derived in a similar manner
by substituting into (18) the optimal numerical values of x}; and ™ obtained from (20) and (21).

Z(xq, X) (24)

4. A positive refinancing theory

An analytical solution for the optimal refinancing strategy provides at once a basis for a positive
dynamic leverage theory and the means for testing it. The following relationships implied by our
optimal solution can be tested as partial equilibrium relationships consistent with the sixth scenario.
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4.1 Refinancing frequency

The optimal expected time interval between transactions at either barrier is calculated based on (7)
and (13). In the sixth scenario of dual return points, the assumption of full symmetry including zero
drift causes (6) to take the simplified form

UG =22 (©")

so that (7) is reduced to

2 2
Vx) =2 )

while (13a) and (13b) assume the following value

P*(a) = P*(b) :% (13)

Based on these results, the optimal expected interval between transactions is

V=P (a)V*(x,) + P (b)V " (x})

_bz—xz2
=—
5 1/2)?
bz—{b+fi— [(b+&) —bz} }
v, U

= 2 (25)

g

Under the full symmetry and single return point of the fifth scenario, (25) is reduced to

., b

confirming the results of BGY for the special case of purely fixed transaction costs.

4.2 The mean leverage

The mean leverage concept has so far remained outside the analysis. It is apparent from the above
derivations that the mean is not a decision parameter of the firm’s leverage strategy, but a by-
product of that strategy. The mean plays a prominent role in past empirical research, often as a
proxy for the unobserved static-optimal leverage. The mean leverage implied by the optimal
strategy, x*, is derived by first re-evaluating the integrals in (9) after substituting x for g(x) and
specifying the optimal a*, b*, and x; or x}. The resulting temporary values y”(x,) and y™(x;) are
then divided, respectively, by the optimal time intervals ¥ *(x,) and V"(x,) to generate Y *(x,) =
y*(x,)/V*(x,) and Y *(x) = y*(xp)/V "(x,), which are then used together with the probabilities
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stated in (13) to calculate
X' =Pa)Y"(x,) + P*(6)Y"(x5) (27)

With full symmetry about the static-optimal leverage, x, = 0, the sixth scenario yields the expected
solution x* = 0. A similar solution would be obtained in the fifth scenario if f, = f, and v, = v,
were numerically specified. Consistent with Fig. 1, it is noteworthy that the mean leverage is
generally unequal to the static-optimal leverage or the mid-point between the barriers or return
points, and may not lic between the return points.

4.3 Elasticities

Testable theoretical relationships in the sixth scenario are provided by the following partial
clasticities of the optimal return points, excess capital cost, and expected time interval between
refinancing transactions with respect to the fixed and variable unit transaction costs and the
variance of the state variable.

Based on (23), we derive

. 2bvy\ 712
1(Xp, f3) = —<1 +7ﬁ> (28)
b
and with the opposite sign
n(xp,vp) = —n(x}, ) (29)
Given b, the variance does not affect the optimal return point, so that
n(x},0%) =0 (30)
Based on a simplified version of (18) in which ¢ = 0 and the symmetric b = —a are exogenous, we
obtain from (24)
. 2bv,\ "2
0@ = (1+772) G
Jo
2bu,\ "2
n(Zg ) =1 <1 +7”ﬁ> (32)
b
both of which are positive, as expected, and less than unity.
Finally, based on (26), we derive
. 213+ dbf3uy + b2l = 2(f1 + bl + 2buy)] V2
n(V*, ) = [ +4bf puop + b7 fyvp — 2(f5 + bfov) (S 3) (33)

I3+ 30f Fop + 26 fy0} = oy + 2bv,))?

and by reversing the sign

7)([7*, Ub) = _W(V*aﬂ) (34)
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The partial elasticity with respect to the variance can be derived from (26):
n(V*, o) = -1 (35)

which has the expected negative sign.

4.4 Broad empirical implications

The general case of refinancing with fixed and variable transaction costs and dual return points has
empirical implications that go beyond the specific results derived for the sixth scenario.

First, any unique static-optimal leverage would be generally distinct from the optimal dual
return points and the leverage mean, and could not be empirically estimated from those values.
Numerous studies attempt such estimation based on the assumption that dynamic deviations from
the static-optimal leverage can be treated as random errors with a zero mean.

Second, a firm’s policy tolerating wide fluctuations of the financial leverage cannot be
interpreted as evidence of a flat-bottom static cost of capital function. Such a policy is generally
consistent with the existence of a unique static-optimal leverage in the presence of substantial
refinancing costs.

Third, to correctly estimate the overall leverage mean, it is necessary to take into account the
effect of the starting (return) point on the potential time paths, and therefore on the conditional
mean. The overall mean is the expectation of the two conditional means.

Fourth, leverage time series are likely to display positive serial correlation because a start at the
upper (lower) return point is more likely to be followed by a return to the same point. Stock
issuance is more likely to be followed by issuance than by repurchase, and vice versa.

Fifth, under the optimal strategy, no leverage adjustment is made until a barrier is reached,
and — due to fixed transaction costs ~ full adjustment from the barrier to the relevant return point is
a single event executed in Jump sum. This aspect of the optimal strategy is confirmed by empirical
studies which generally fail to uncover a systematic reversion of the leverage to its mean or any other
point.

Sixth, static estimates of the firm’s cost of capital contain biases from two sources: (a) refinancing
transaction costs are probabilistic rather than deterministic, and should be measured under the
optimal refinancing strategy; and (b) the penalty associated with tolerable random excursions from
the static-optimal leverage should be included in the cost of capital.

5. Numerical solution

The class of dynamic leverage models presented above may be further generalized when the search
for closed form solutions is abandoned, and numerical methods are used to generate optimal
strategies under realistic conditions with the desired degree of complexity. This flexibility may
be especially useful for empiricists and practitioners. In the eight numerical solutions presented
in Table 2, the leverage is measured by the debt/asset ratio of a firm with one dollar of assets.
The base case utilizes a bifurcated, asymmetric U-shaped penalty function, g(x), created from
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two power functions:

glx) = Cl;f' (xg — x)™" +n when x < x,
= g%ht (x — xo)™e" + 7 otherwise, (36)

where the power parameters are oy,; = 1.7 and a,;,,, = 2, and the slope coefficients are (5 = 0.426
and (;on = 3. These parameters are selected to produce a realistic penalty function with a unique
minimum cost of capital of 7 = 15%, occurring when the debt ratio is x, = 50%, and with static
costs of capital of 15.5% and 16.5% occurring at debt ratios of x = 40% and x = 60%, respec-
tively. The instantaneous annual drift and volatility parameters of the process are p = 0.1 and
o = 0.2, the fixed costs per equity transaction are f, = $0.005 and f;, = $0.05, and the variable cost
coefficients are v, = 0.01 and v, = 0.025.

The solution for the base case, reported under the same column, shows a wide optimal leverage
range between a* = 9.80% and b* = 73.87% with respective return points x), = 29.59% and
x; = 32.60% which are distinct but not far apart. The distance x, — a” = 40.2% is greater than
the distance b* — x;, = 23.87% because of the higher fixed transaction cost at the upper barrier and
the positive drift, effects which are mitigated by the greater penalty assumed for excess debt than
for debt deficiency. The optimal size of stock issues is greater than that of stock repurchases, as

Table 2. Numerical solution for cases with exogenous parameters x, = 50% and n = 15% for a firm
with one dollar assets.

Base Case Case  Case Case Case Case Case
case A B C D E F G
Input
Standard deviation, o 0.200 0.100
Drift, u 0.100 0.050
Penalty exponent, o,y 1.700
Penalty slope factor, 0.426 1.278
Penalty exponent, g, 2.000
Penalty slope factor, (i 3.000
Fixed repurchase cost $, f, 0.005 0.010  0.0075
Variable repurchase cost, v,  0.010 0.015 0.000
Fixed issuance cost $, f;, 0.050 0.075
Variable issuance cost, vy 0.025 0.0375  0.000
Output

Lower debt barrier, a* % 980 1491 1216 23.33 5.51 377 8.63 11.11
Lower return point, x,% 29.59 2724  31.18 3784 2881 2447 28.85 30.04
Upper return point, x;% 3260 2990 3569 40.65 3283 2843 33.14 30.04
Upper debt barrier, b* % 73.87 6641 7474 76.16 7401 76.12 73.99 73.61
Mean leverage, x*% 4231 43.66 42.14 49.04 4154 40.53 42.20 41.93
Capital cost, z* % 1829 17.56 17.82 1931 18.34 19.00 18.45 17.93
Refinancing interval, ¢* yr 225 3.40 2.26 1.53 2.54 2.78 2.34 211
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reflected in the effect on the firm’s debt ratio: b* ~ x}, > x; — a”. The transaction size is directly
related to the fixed transaction cost and inversely to the variable cost parameter. The close distance
between the return points themselves, x;, — x; = 3.01%, is caused by the relatively small component
of variable costs.

Due to lack of overall symmetry in the process and the various costs, the mean leverage
associated with the optimal strategy, x* = 42.31%, is not at the half-way point between the barriers
(41.84%) or the return points (31.10%).

The dynamic-minimal cost of capital, z* = 18.29%, is 3.29% greater than the cost of capital of
15% attributed to the optimal leverage in the static context. The optimal mean time between equity
transactions is 2.25 years.

The partial effects of the various parameters on the optimal strategy is brought to focus by
comparing the base case with cases A through G in which individual parameters are changed
one or two at a time.

Case A. The primary effect of a decrease of the variance from ¢ = 0.2 to o = 0.1 is a decrease of the
optimal distance between the barriers.

Case B. A decrease of the drift from p = 0.1 to g = 0.05 pushes both barriers upward.

Case C. An increase in the slope of the left branch of the penalty function from ¢,; = 0.426 to
et = 1.278 (so that the penalty at x = 0.4 increases from g(x) = 15.5% to g(x) = 16.5%) causes a
dramatic upward shift of the lower barrier from a* = 9.80% to a* = 23.33% accompanied by
substantial shifts in the same direction of x, x;, b*, and x*. These changes cause a measurable
increase of the cost of capital from Z* = 18.29% to Z* = 19.31% and a decrease of the expected
time between equity transactions from V* = 2.25 years to V* = 1.53 years.

Case D. An increase of the fixed transaction cost component of stock repurchase from f, = $0.005
to $0.010 mainly causes a decrease of the optimal lower barrier from 9.80% to 5.55%.

Case E. An equal proportional increase of 50% in fixed equity transaction costs for stock repurchase
and issuance pushes both barriers out and increases the cost of capital from z* = 18.29% to 19.00%.
A relative increase of fixed transaction costs tends to increase the optimal size of equity transactions.

Case F. An equal proportional increase of 50% in variable equity transaction costs for stock
repurchase and issuance causes a small upward shift of the return points. A relative increase in
variable transaction costs tends to decrease the optimal size of equity transactions.

Case G. As an extension of Case F, the elimination of variable equity transaction costs causes the
upper and lower return points to converge at x;, = x; = 30.04%. The absence of variable transaction
costs is a special case of the class of models presented in this paper.

6. Conclusion

This study was motivated by the mounting evidence that the financing of firms in the real world is
dominated by a hierarchy based on differential transaction costs, a behaviour which is not
explained by traditional theories of static tradeoff. We offer a class of diffusion models that mimic
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this behaviour in a stochastic dynamic framework and are designed to optimize a financing strategy
using a wide range of static tradeoff theories as input. Our models accommodate a combination of
fixed and variable refinancing costs which generally lead to dual target debt ratios — one for each of
the refinancing barriers. We obtain new analytical expressions consistent with an optimal refinanc-
ing strategy, including the firm’s cost of capital and its mean leverage. We also demonstrate the
flexibility of our class of models in handling complex scenarios which are not amenable to an
analytical solution. Our class of models augments the pecking order theory and provides a quan-
titative framework for its implementation as a decision tool. It also provides additional hypotheses
for its empirical validation. Symmetrically, our results show the importance of dynamic factors in
designing and interpreting empirical tests of static tradeoff theories.
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Appendix A

Steady-state probabilities of starting the process at x, versus x;,

Since any encounter with barrier a(b) triggers refinancing and shifting of the state variable to
return point x,(x,), the probability of starting the process at x,(x,) is the same as the probability
of hitting first barrier a(b), denoted by P(a)[P(b)]. Let d(x,)[d(x,)] denote the conditional prob-
ability of hitting first the lower barrier, a, if the process starts at x,(x;), and u(x,){u(x;)] denote the
conditional probability of hitting first the upper barrier, b, if the process starts at x,(x;). Since the
following relationships must hold in any refinancing cycle:

d(xq) +u(x,) =1 (Al)
d(xp) + u(xp) =1 (A2)
Pla) + P(b) =1 (A3)
we can express sequentially the probabilities of hitting first each barrier in cycle 1 + 1 as
Pa), 41 = P(@),d(x), + P(b)d(xy), (A4)
P(b), 11 = P(b)ul(xy), + P@)u(x,), (A3)
Recalling the assumption of steady state, we drop the subscripts and rewrite
P(a) = P(a)d(x,) + (1 — P(@))d(x,) (A6)
P(b) = P(b)u(x,) + (1 — P(B))u(x,) (A7)

When these equations are solved respectively for P(a) and P(b), we obtain the expression appear-
ing in Equations (13a) and (13b) in the text.



